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Classical dynamics of an extended charge subjected to a linear 
force field and Rayleigh-Jeans radiation for a wide class of 
charge distributions 

R Blanco 
Departamento de Fisica Teorica, Universidad de Cantabria, Santander, Spain 

Received 3 December 1986. in final form 24 June 1987 

Abstract. We study the solutions of the equation of motion for a classical extended charge 
in the presence of a linear force. In very general conditions, we obtain the qualitative 
behaviour of the solutions, which for radii greater than a critical value do not present 
runaways, and display two different terms: one decaying with time and one that oscillates 
with bounded and not decreasing amplitude. For a slightly more restricted class correspond- 
ing essentially to radii not too close to the critical one, but much smaller than the length 
travelled by the light in a period of the linear force, we show that the non-radiating 
oscillations do not exist and the solution looks very similar to that of the Abraham-Lorentz 
model. We also analyse some aspects concerning the interaction of the oscillator with 
Rayleigh-Jeans radiation and show that its effect is important even upon the phase-space 
trajectory unless the electromagnetic mass is much smaller than the mechanical one. The 
results of this paper extend those of a previous paper dealing with a Yukawa charge 
distribution to a wide class of charge distributions. 

1. Introduction 

Classical theories of the extended electron have been proposed as alternatives to point 
theories so as to overcome the well known strange effects of the latter, namely 
pre-acceleration, runaways and infinite self-energy. (Interesting reviews of this subject 
can be found in Erber (1961), Coleman (1982), Pearle (1982).) Except for the detailed 
work by Nodvik (1964), the studies appearing in the literature consider the case of 
rigid spherically symmetric charge distributions in the non-relativistic approximation. 
Moreover, the translational and rotational motions are considered separately (see 
references in Blanco (1987)). Within this context the study of the motion of the 
extended electron is usually restricted to considering particular charge distributions, 
such as the uniform sphere (Bohm and Weinstein 1948), the shell (Bohm and Weinstein 
1948, Daboul and Jensen 1973a, b, Franqa et a1 1978, Grandy and Aghazadeh 1982, 
Levine et a1 1977, Moniz and Sharp 1977), the Yukawa-type distribution (Blanco et 
a1 1986, de la Peiia et a1 1982) and others (Markov 1946). A more general treatment 
was initiated by the author in the previous paper (Blanco 1987). This work was devoted 
to analysing the problem of causality of the model for a rigid spherically symmetric 
charge distribution and in the non-relativistic approximation. In the present paper we 
intend to go further into the characteristics of this model, with the aid of the analysis 
of the simplest force field that admits exact solution, namely the linear force. Our aim 
is to find the behaviour of the solutions with as general a charge distribution as possible. 

0305-4470/87/175899+ 23!§02.50 0 1987 IOP Publishing Ltd 5899 
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This work generalises for a wide class of charge distributions most of the results 
of Blanco et a1 (1986) in which only a Yukawa charge distribution was considered. 
However, we continue restricting ourselves to rigid spherically symmetric charge 
distributions and to the non-relativistic regime. Other limitations will be specified in 
the text. 

Our interest is also related to the possibility of justifying the (point-like) Abraham- 
Lorentz (AL) model as based on a particular expansion starting from the extended 
model. In other words, we are interested in seeing to what extent the AL model is an 
approximation to the extended model. Indeed, we shall see that this is guaranteed in 
certain conditions, the most interesting of which is that the radius must be not too 
small, and that otherwise different behaviours can appear depending on the specific 
model of charge distribution we are dealing with. Related to this, the point arises of 
the perturbative character of the damping, which is discussed in this paper. 

Another point of interest is the asymptotic behaviour of the solutions which is 
related to the existence of runaways and non-radiating solutions. 

Following the generalisation of the results obtained in Blanco et a1 (1986), we also 
present some features of the interaction of the extended charged oscillator with 
Rayleigh-Jeans (RI) radiation. The interest in this sort of radiation lies in the fact that 
the system fulfills a fluctuation-dissipation property (see § 6) which allows for radiative 
equilibrium for an arbitrary conservative force (not only a linear one), as is shown in 
Blanco and Pesquera (1986). 

The paper is arranged as follows. In § 2 we explain the model whose general 
solution appears in § 3. Sections 4 and 5 are devoted to a study of the explicit form 
of the solutions imposing certain weak restrictions on the charge distribution. In § 6 
the interaction with the ru radiation is studied. Finally, the conclusions are discussed 
in § 7. Two appendices are included to shorten calculations in the main text. 

2. The model 

The equation of motion for an extended electron has been given in several papers 
(see, e.g., de la Peiia et a1 1982, FranGa et a1 1978, Kaup 1966). Here we only give 
the final expressions. 

Let e p ( r )  be the charge density as a function of the distance to the centre of the 
distribution and let us denote by mO, me and m, the mechanical, electromagnetic and 
observable masses respectively. The latter fulfil 

m = ma+ me.  

Introducing 

wb2(w) sin wt dw ( 2 . 4 ~ )  

(2.46) 
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and considering only one-dimensional motion (in the x direction), the equation of 
motion for the coordinate of the centre of the charge, x, can be written as follows: 

x ’’ = - - dt’ y (  t - t’)x( t ‘ )  
ml 

where F denotes the effect of the external force upon the charge. 
The following relations will be useful: 

E = loa y (  t )  d t  = $me/  m ,  

lom t y  ( t ) d t = ( 1 + E )  7o (2.7) 

m = m , ( l +  E )  (2.8) 

T,, being, as usual, 2e2/3me’ .  

independent of the charge distribution. This fact will be important later on. 

radii, namely r,, and r u ,  such that 

Note that if we multiply both terms of (2.7) by m 1  the RHS results in a quantity 

We recall (see Blanco 1987, hereafter referred to as I) the existence of two special 

ml(rcr) = O  E (  rcr+) = +a E ( rcr-) = --CC (2.9a) 

E (  r , )  = 1 (2.96) 

ru ’ rcr . ( 2 . 9 ~ )  

In (2.5) we shall assume that the force is turned on at a time t = 0, and that prior 
to this time the charge is not accelerated. Remember that in I we have shown that for 
certain radii a non-vanishing acceleration could be a solution without any external force. 

The field force in which we are interested is given at any point r by 

F ( r )  = -mwir .  (2.10) 

Its effect upon the charge will be 

F ( x )  = F ( r ) p ( l r - x i l )  d3r = -mwixi  = Fi (2.11) I 
where xi denotes the position of the centre of the charge. Consequently, (2.5) now 
becomes 

X = - w : x  - lo‘ dt‘  y (  t - t ’ ) f (  t ’ )  (2.12) 

with 

w :  = &(l+  8). (2.13) 

So far we have no restrictions, with the exception of the non-relativistic condition 

V / C < <  1. (2.14) 
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In fact, equation (2.5) requires another condition, the explanation of which is 
outside the subject of the present paper, and can be found in Nodvik (1964). This 
condition is 

are<< c2 (2.15) 

In addition, in the following analysis we shall be obliged to make stronger restric- 
where a denotes the acceleration and re the electron radius. 

tions to increase our knowledge of the solutions. 

3. General solution 

As I have shown in I the solution of (2.12) is unique for each initial condition xo, vo.  
A straightforward calculation gives 

(3.1 a ) 

(3.lb) 

where the x i ,  i = 0, 1,2,  satisfy the following relations: 

(3.26) 

(3.3) 

The Laplace transforms of the functions x, ,  i = 0, 1,2,  will be useful in the following: 

( 3 . 5 ~ )  i o ( P )  = (1 + T ( P ) ) i z ( P )  
(3.5b) 

(3.5c) 

4. Runaways and non-radiating oscillations 

In this section we introduce new restrictions upon our model, which will allow us to 
characterise the solutions as far as runaways and non-radiating oscillations are 
concerned. It will be seen in the analysis below that removing these conditions would 
demand the study of particular charge distributions. In other words, the analysis seems 
to indicate that nothing can be said if such conditions are not imposed. 

We shall consider in the following that 
(A)  the memory function is always non-negative, 

Y ( t ) > O  

(B) y exists and is bounded, 
(C) the radius is larger than the critical one, i.e. 

r' rcr m , > O  & > O  

(D) the abscissa of convergence of 7, uc, is strictly negative. 

(4.1) 

(4.2) 
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With the exception of (B), which is shown in I to hold in very general and physically 
reasonable conditions, these assumptions impose what we should think of as important 
restrictions upon the kind of charge distribution. For instance, (A) is satisfied if p has 
a definite sign (see (2.46)) but not otherwise, in general. 

As concerns the radius, for values smaller than rcr it seems (see I) that the system 
would display runaway behaviour, although this point needs a specific study. Finally, 
(C) imposes restrictions as to how fast the charge density decays for long distances. 
An as yet unknown relation exists between the decay rates of p and y, and (C) imposes 
that y decreases faster than an exponential, i.e. 

3a/ y(  t )  < constant x e-ar. 
1-w 

(4.3) 

We think that the study of systems not fulfilling (A), (C) and (D) would be 
convenient, for new behaviour different from the ones we shall obtain in this paper 
could appear. 

Returning to our analysis, if we want to find the behaviour of the functions xi we 
first calculate the zeros of 

W p )  = 4 + P 2 [ 1  + 5TP)l (4.4) 

which are the poles of xi, i = 0, 1,2. 
With the conditions stated above we shall show the following. 
(i)  There are no zeros with positive real part. 
(ii) Zeros having their real part larger than the abscissa of convergence of 7 are 

isolated points. 
(iii) The number of zeros lying in any region of the complex plane between two 

vertical lines, a ,  s Re p s a 2 ,  a,  > uc, is finite. In particular, the number of zeros lying 
over the imaginary axis is finite. 

(iv) The zeros with null real part have multiplicity one. 
Before proving these properties we shall expose their consequences. 
From (iii), for any 7) < O  there are a finite number of zeros of n ( p )  with real part 

between q and 0. Consequently, we may choose vo<O such that the zeros lie either 
on the imaginary axis or to the left of the line C, = Rep  = q,. Let C2 be any other 
vertical line with positive real part. By using the inverse Laplace transform we have 

Now, since ia( p)  -* p+m 0 it is straightforward to pass from the integral along C2 
to the integral along C,, taking into account the zeros of ll( p)  between both lines. 
These zeros are all on the imaginary axis, by construction. These, according to (iii) 
and (iv), are simple and finite in number. 

Consequently we may write 

(4.6) 

where ipn denote the imaginary zeros of n ( p )  and Ka(ip,,) is the residue of iol at the 
point p = ip,,. The first integral of (4.6) can also be written 

Thus this integral decreases to zero as long as the time elapses. 
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Now, we have obtained that the solutions are bounded in time: no runaway solutions 
appear. Nevertheless non-radiating solutions can exist corresponding to the second 
term in (4.6). These sorts of solutions have been known since the beginning of the 
century. They were first encountered by Sommerfeld (see Erber 1961). In our case 
the existence of these states is only approximated due to the non-relativistic treatment. 
However, it is important to draw attention to the fact that, in a relativistic treatment, 
these solutions are still possible (Devaney and Wolf 1973, Fargue 1981). 

4.1. Proof of properties (i)-(  i u )  

Let us consider equation (4.4) separated into its real and imaginary parts: 

w :  Re(p-2)+ 1 + R e  + = O  

w :  Im( p - 2 )  + Im + = 0. 

( 4 . 8 ~ )  

(4.8b) 

Let us write 

p = A + i p  (4.9) 

with A, p ER. 

as 
To prove (i)  let us suppose A > 0. By using ( 2 . 4 ~ 1 ,  equation (4.86) may be written 

2 32.rr2e2 W 
-- 2/lA [oadwb2(w) (A2-P2+W2)2+4P 2 A 2=0  ( A 2  - p2)' +4p2A2 

(4.10) 
-w:2pA 

3 m ,  c3 

whence 
equation ( 4 . 8 ~ )  results in 

= 0 due to the fact that, by hypothesis, A > 0 and m, > 0. Consequently, 

w 2  

3m,c3 dw b2( w )  ( A 2 + w  2 ) 2=0  
32.rr2e2A2 JOE w :  

h 2  
- + 1 +  (4.11) 

which has no solutions again due to m , > 0 .  This proves (i). Note that this is a 
consequence of condition (C) only. 

( i i )  is a consequence of the fact that, for R e p >  crcr n ( p )  is an analytic and 
non-identically vanishing function. 

To prove (iii), condition (B)  allows us to write 

Now, 

whence the Laplace transform of li.( t) l  is strictly decreasing: 

Consequently, for any A in [ a , ,  a,], (4.12) and (4.14) give 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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and therefore it is possible to find po fulfilling 
V P  > PO Iw:/P2/ < a  l%al+ip)I < i .  (4.16) 

Let us consider now the region of the complex plane defined by 

D = { p  E @ / a ,  s R e p  c a,; IIm pI > po}. (4.17) 

In this region, from (4.12), (4.14) and (4.16) it results that 

1w:/p2+ i ( p ) I ~ w : / P 2 + I ? ( P ) l  < f  (4.18) 
and then I l ( p )  cannot have zeros in D. Consequently, the zeros of I I ( p )  between 
I m p  = a,  and I m p  = a, lie in a compact domain and, as they are isolated, their number 
is necessarily finite. This proves (iii). 

II(ipo) = O+II’(ipo) # 0. 

Finally, to prove (iv) we shall show that 

(4.19) 

We first prove that p ’ ( p o )  is finite. To see this, we write (2.3), after a little algebra, as 

Differentiating, we immediately obtain 

(4.20) 

(4.21) 

whence it results that 

which is the desired result. 
Secondly, from ( 2 . 4 ~ )  a straightforward calculation yields 

(where VP denotes the principal value). 

and imaginary parts of I I ( p ) / p 2 ,  as 
The conditions for ipo to be a zero of 11( p )  can now be written, separating the real 

p*(Po) = 0 ( 4 . 2 3 ~ )  

(4.236) 

Note that po = 0 (i.e. p = 0) is not a zero of II( p ) .  Let us now calculate II’(iFo): 

n’(i(~0) = 2 i ~ o ( l +  7(icLo)) - pi7’(ip0) (4.24) 
and using (4.4) we obtain 

n’(ip,,) = - 2 w : / i ~ ~ - p i 7 ’ ( i p ~ )  (4.25) 
whence we obtain 

(4.26b) 
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From (4.22), ( 4 . 2 3 ~ )  and the existence of p*’(po) we readily obtain 

Re I-I’(ipo) = 0. (4.27) 

For Im(II‘(ipo)), we show in appendix 1 that 

whence we finally obtain 

Im[I-I’(ipo)] > 0 

which proves (iv). 

(4.28) 

(4.29) 

5. Behaviour of the solutions for a localised and sufficiently big charge 

A further step in the study of the solutions can only be given if more restrictions are 
imposed on the model. Indeed, the analysis developed in this section will show the 
impossibility of predicting the kind of behaviour resulting in this section if the new 
restrictions defined below did not hold. 

We shall consider now the following additional conditions: 
(E) the charge distribution has bounded support, i.e. 

P ( r )  = 0 for r > re = cr, (5.10) 

(5 . lb)  

( 5 . 1 ~ )  

Some comments on these conditions are necessary. 
Condition (E)  may be considered as perfectly reasonable, although we might also 

admit distributions with non-compact support and having the most important contribu- 
tion within a region of radius re .  It will be seen, indeed, that in this case a similar 
behaviour of the solutions is to be expected. Nevertheless, the analysis would become 
much more complicated. 

Condition (F)  says that the period T associated with the oscillator is much greater 
than the time light takes to cross the charge. I t  is clear that for an electron it constitutes 
a very small restriction. 

As concerns condition (G), the analysis of this section shows it to be necessary in 
order to predict the behaviour displayed with the other three conditions. One can 
easily see that, for E = 1, such behaviour cannot yet be guaranteed. On the other hand, 
condition ( C )  implies, according to the results of I, that the homogeneous equation 
only has a trivial solution, and then we shall always have x = 0 before the force is 
turned on. 

Before passing to the analysis of the solutions a consequence of (5.1~1, b, c) can be 
obtained. 

In equation (2.46) one readily sees that 

t > 2.re*y(t) = o  (5.2) 
whence (2.6) and (2.7) give 

( 1 + E )  T~ = [O*’c t y (  t ) dt  s 27, lo2Te y(  t )  d t  = 2 7 , ~  (5.3) 
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i.e. 
To/ re s 2&/ ( 1 + E )  < 1 

wore<< 1 .  

where we have made use of ( 5 . 1 ~ ) .  Consequently, also 
(5.4) 

(5.5)  
This relation is usually considered when studying point models of an electron due 

to the pre-acceleration phenomenon taking place in a period of time of order ro. 
Equation (5 .5 )  represents the necessity for this time interval to be much smaller than 
the time characteristic of the oscillator (or, in general, of the external force field). 

The relation ro / r ,  for a Yukawa-type distribution (Blanc0 et a1 1986) is exactly 
2 ~ / ( 1 +  E ) .  Then, although this charge density does not satisfy (5 . la ) ,  it is not expected 
that an upper bound for ro/7, smaller than the one expressed in (5.4) might be found. 

In order to study the behaviour of the solution we consider two steps: first, we 
analyse the situation of the zeros of H(p) in the complex plane, and then look for a 
more explicit expression of the solutions. We also include a comparison with the 
Abraham-Lorentz model. 

5.1. Zeros of n(p) 
The first point here is to show that no non-radiating solutions exist, i.e. there are no 
zeros over the imaginary axis. To see this we first show that conditions (E) and (F) 
imply that non-radiating solutions exist only if E is negative or, if positive, is larger 
than or very close to 1; in other words, if the electron radius is smaller than or very 
close to ru (see equations (2.96, c ) ) .  

To see it let us suppose that O <  E < 1 (condition ( G ) )  is not considered and write 
equations (4.23a, b), taking (4.22) into account as 

w : / p : =  1 +Re T(ipo) ( 5 . 6 ~ )  

Im $(ipo) = - (5.6b) 

Now, from equation (2.46) we obtain that y ( t )  = O  for t > 27,. Accordingly (5.66) can 
be written 

y(  t )  sin pol dt  = 0. I: 
y (  t )  sin pot dt  = 0. (5.7) lo2Te 

However, for poS 7r/2re, :;le integrand in (5.7) is non-negative and non-identically 
zero, and the integral cannot vanish. Consequently, equation (5.7) means that 

W O >  T/27,) 1 / T e .  (5.8) 

/Re T(ip0)l s IT(ip0)I s E (5.9) 

Furthermore, it is trivial to see that 

and consequently 

l - & < I l + R e  j(ipo)l 

whence, from (2.131, (5 .6a)  and (5.8) we obtain 
(5.10) 

( 5 . 1 1 )  

as we required. 
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If condition (G) is now taken into account, it is obvious that it is in contradiction 
with (5.1 1). Consequently, no zeros of II( p )  lie on the imaginary axis and the oscillatory 
terms in (4.6) do not exist. 

Once this has been proven, we shall show that the zeros are distributed into two 
groups: two of them are very close to the ones corresponding to the undamped oscillator 
( E  +O), i.e. pi 2: *iwo, and the others are located to the left of the vertical line 
R e p  = -1/4re, and outside the region 

D ,  = { p  E C/IIm pi < T / ~ T , } .  

Let us first consider the possible zeros in D, . 
The following relations hold: 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

For this value of p we may expand in a power series of W , T ~  and retain the first 
terms. To see this let us write 

with 

(5.17) 

(5.18) 

Now 

0 s  Tk+l Tk =Z 1 V k  (5.19) 

and then the series in (5.17) converges betterthan an exponential. For IpI < wo( 1 + 
we may write 

= [ E  -P70(1 + E ) +  E O ( ( W 0 7 A 2 ) 1 .  (5.20) 

Going now to equation (4.4) we obtain 

0 = U:( 1 + E )  + p ' [ (  1 + E ) (  1 -PTO)  E O ( ( W o T e ) * ) ]  (5.21) 

the solution of which may be obtained in terms of an expansion in w ~ T , .  We obtain 
the following two solutions: 

p +  = *iWO-fW~70+Wo~((w0~,)2) (5.22) 

which correspond to the undamped oscillator plus terms of order ~ ~ 7 , .  Note that the 
second term of the expansion of p* is independent of the particular charge distribution 
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we are considering. This is due to the fact that the k = 1 term of the expansion (5.17) 
is distribution independent, because of relation (2.7), i.e. 

l + &  To T 
I -  

E 27,' 
(5.23) 

Now, we are going to consider the region of the complex plane 

D2 = { p  E C/IRe pI < 1/47,, IIm pI > 7~/47,). (5.24) 

On the one hand, we may write 

(Re 71 6 I,''' y ( t )  exp( t/47,) d t  < EJe < 0.9 (5.25) 

whence we obtain 

) I + . ~ I > / ~ - E J ~ J > O . I  (5.26) 

and, on the other hand, 

I w : / p ' I < w ; ( 1 + ~ ) ~ , 2 1 6 / 7 ~ ' < 3 ~ ~ ~ : .  (5.27) 

Because of condition (5 . lb) ,  relations (5.25) and (5.27) cannot be fulfilled by the 
same p ,  whence we deduce that there are no zeros of n ( p )  lying on D2. 

Consequently we have found the zeros of n(p)  are located within the region 
{ p  E @/Re p( -1 /4~ , ,  IIm pl).rr/4.re}, i.e. too far from the coordinate axis, except two of 
them that lie very close to the zeros of the undamped oscillator, and are expressed by 
(5.22). 

5.2. Behaviour of the solutions 

In this section we will show that the behaviour of solutions is mainly determined by 
the zeros p * .  We shall see indeed that the functions xl( t )  can be explicitly obtained 
up to terms of order ~ ~ 7 , .  

Let us consider two vertical lines in the complex plane C ,  having all zeros of II( p )  
on its left, and C2 between p* and the other zeros, the latter defined as R e p  = - 1 / 5 ~ , .  

By using the inverse Laplace transform, expression (4.6) may be written 

1 x,( t )  = 2 dz e"i,(z) = - dz ez',fI( z )  + K,( p + )  ep+' + K,( p - )  ep-' t > O  

(5 .28 )  

K , ( p , )  being the residue of i, in p* respectively. Let us denote by K , ( t )  the two last 
members of the RHS in (5.281, R , ( r )  the integral over C2 and 

571 Clt 2Tl I,, ' I  

p* = wo( i i  v - 6) 
where, by virtue of (5.24), 

(5.29) 

Let us also write 
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(5.32a) 

(5.326) 

( 5 . 3 2 ~ )  

(5.33) 

and 

K i ( t )  = 2 Re[vi(p+)KAp+) exp(iw0vt)l exp(--w05t). (5.34) 

Let us then calculate K2(p+). Making use of the l'H8pital rule we obtain 

P -P+ - P+ K 2 ( p + )  = lim 
P'P+ w : + p 2 [ 1 + j ( p ) ]  - - 2 w : + p : j ' ( p + ) '  

As we are interested in an wore expansion, note that 

I P : ? ' ( P + ) ~ -  - w ~ l J ~ 7 e  d t  y ( t ) t  
w :  w;( 1 + E )  

WO 

l + &  
< - 27, E exp( 5 ~ ~ 2 7 , )  - 2w0r, << 1 

and then 

(5 .35)  

(5.36) 

(5.37)  

Finally, by using (5 . la) ,  (5.251, (5.32a, 6, c)  and (5.34) simple algebra yields 

= (l/wo)[sin(wovr) + O(wore)] exp(-wo5t) (5.38a) 

K , ( t )  = [ c o ~ ( w ~ ~ t ) + O ( w ~ r ~ ) ]  exp(-wo5t) (5.386) 

K 2 ( t )  = [sin(w,vt) + O(wo7e)] exp(-wolt). ( 5 . 3 8 ~ )  
1 

wo(1 + E )  

Now we must investigate the contribution of R i ( t )  in (5.28) 

dz e" t > 0; i = 0,  1,2. (5.39) 

It will be useful to consider these expressions when is replaced by E :  

(5.40) 

(5.41a) 

(5.416) 

(5.41 c) 
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The interesting point is that R f (  t )  = 0 ( t  > 0). This can be seen closing the integration 
contour to the left of C2 and taking into account that the only poles of the integrand 
of R f ( t )  are on the imaginary axis. Consequently we may write 

t > O  (5.42) @i(z)  dze"  
[w;(l+E)+Z2(1+ T)](w;+z2) 

where now 
= U;(  T - E ) 

0, =w;Z(+ E )  

z'( E - +) 
0' = 

l + E  

(5.43a) 

(5.43b) 

(5.43 c) 

Equations (5.42) for i = 0, 1,2 are analysed in appendix 2 where the following 

wolRo(r)l < 3 0 0 ( w , ~ , ) ~  exp(- t /5~,)  (5.44a) 

IR,(t)I< 100(woTe)2 exp(- f /5~ , )  (5.44b) 

relations are obtained: 

wo(l+ E)IRz(t) I  <25(WoTe) exp(- t /5~,) .  (5.44c) 

If we compare these expressions with o o K o  (5.38a), K ,  (5 .38b) and wo( l+&)K2  
(5.38c), respectively, it is clear that the latter are the predominant ones. Indeed the 
Ri are not only of order w0~,<< 1 with respect to the Ki, but they even decrease with 
time much faster. The general solution in phase space is written by taking ( 5 . 2 8 ) ,  
(5.38a, b, c)  and (5.44a, b, c)  to (3.la, b ) :  
x (  t )  = [ x o  cos( wovt )  + ( i o / w , )  sin( wovr) + O ( w o ~ , ) ]  exp(-wo5t) + O( w07, exp(-t/S~,))  

(5.45a) 

x ( t )  = [ -xowo s in (wov t )+xocos (w ,v t )+O(wO~, ) ]  exp(-wo&)+O(woTe exp(-t/5~,)) .  
(5.45 b) 

From (5.30a) one readily deduces that the motion is approximately that of the 
undamped oscillator up to times of order 

(5.46) 

i.e. during many periods. This behaviour shows that, for models satisfying conditions 
(A)-(G) the effect of the damping term in the equation of motion is essentially 
perturbative with respect to the linear force. We want to emphasise the fact that 
nothing can be said in general if those conditions are not satisfied. 

Obviously, in (5.45a, b )  we see that the energy decreases with time at a rate 

d E / d t  -2wo5E (5.47) 

which is much slower than the oscillations. Moreover, we obtain that the system is 
non-relativistic provided the initial conditions are non-relativistic. 

Finally, as concerns condition (2.15), a similar analysis for x2  (which appears in 
the expression of the acceleration) again shows that appropriate initial values of xo 
and xo guarantee that (2.15) holds at all times. 
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5.3. Comparison with the Abraham- Lorentz ( A L )  model 

The general solution of the A L  model for t > 0 can be written 

~ ~ ~ = x ~ e - ~ ' [ c o s  wt+(p/c; j )  sin w t ] + ( x o / 6 )  e-&'sin W t  

x.AL=x,,e-p'[cos wt - ( p / ~ )  sin W ~ ] - ( X ~ / W )  e-@'(p2+w2)  sin wt 

where p and 6 can be expressed in powers of w ~ T ~ :  

( 5 . 4 8 ~ )  

(5.486) 

(5.49a) 

(5.496) 

Comparing with (5.45a, 6 )  we see that the A L  model solution only accounts for the 
predominant and slowly oscillating terms of the extended model solution, whereas the 
last terms in (5.45a, 6)  do not appear in (5.48a, b ) .  Moreover, as concerns the common 
terms, we see that they are equal in the first order of W ~ T ~  for all parameters appearing 
in both expressions, i.e. the frequency, wov and 6, the decaying rate, wok and p, and 
the coefficients. In fact, the first term of the expansion of p, (5.49a), coincides with 
the second term of the expansion of p * ,  (5.22), i.e. the first term of the expansion of 
- m o t  (see (5.306)). 

Recall that such a term is the same for all charge distributions, as we said in the 
comments following (5.22). This is why the decaying rate also coincides in first order 
for both electron models. 

However, all the parameters differ in the second term of their respective expansions 
in w ~ T ~ .  This is because such terms for the extended model in general depend on each 
particular charge distribution. 

There is another difference between the two models. If one considers the successive 
derivatives of x2 (or x( t ) ) ,  we find that the rapidly decreasing terms have a contribution 
which grows as 7;" for the nth derivative of x2. This is essentially obtained when 
deriving the exponential exp( - t / 5 7 , ) .  Obviously this exponential remains and such 
behaviour occurs for very short times. Consequently, in the first instance, these rapidly 
decaying terms are the predominant ones in the case of all derivatives of xz. This may 
be confirmed in the case of the Yukawa distribution, as is seen in Blanco et a1 (1986). 

6. Oscillator in the presence of a RayleighJeans (RJ) radiation 

Most of the calculations appearing in Blanco et a1 (1986) for this case are made in 
fact for a general charge distribution with the exception of the final results, which are 
valid only for the Yukawa case. This is why in this section we shall explicitly use the 
general expressions obtained in that paper, to which we refer the reader for the radiation 
model and the notation. 

We only recall that the RJ radiation is modelled as a zero-mean Gaussian stochastic 
process whose spectrum is given by 

S ( w )  = 4 w 2 k B T / 3 c 3  (6.1) 
T being the absolute temperature. 

In this context, the solution of the equation of motion 

x = - w : x  - jo' dt '  y (  t - t ' ) x ( t ' )  + ( l / m , ) F " (  t )  



Dynamics of a classical extended charge 5913 

(where F" stands for the radiation field force), which can be written as 

x ( t ) = xoxl ( t 1 + loxo( 1 + 

x( t )  = -xOw:x2( t )+xoxl ( t )  + 

ds x2(  t - s ) Fst( s I /  m, ( 6 . 2 ~ )  Id 
x2(  t - s ) (FSt (s ) /ml)  ds  (6.26) 

is also a Gaussian stochastic process whose mean is the solution without field, i.e. 
expressions ( 3 . 1 ~ )  and (3.lb), and whose covariance matrix is given by 

Id 

(6.3b) 

( 6 . 3 ~ )  

As concerns the stationary probability density, the general result is obtained in 
Blanco et a1 (1986, 0 VC1). We only want to call attention to the fact that the solution 
is not in general given by the Maxwell-Boltzmann (MB) distribution law unless the 
condition E << 1 is fulfilled, which corresponds to radii not too small. 

On the other hand, we shall see now that the results of Blanco er a1 (1986) concerning 
the perturbation of the solutions caused by the radiation field are also satisfied for the 
class of charge distribution considered in the preceding sections. The relative deviations 
for the position, the velocity and the acceleration are calculated in Blanco et a1 (1986): 

(6.4b) 

( 6 . 4 ~ )  

where CO, = (x2( r ) )  - (x( t))' and only trajectories with energy of the order of the mean 
energy, 8 - (8) = kBT( 1 + ~ / 2 ) ,  have been considered. In the last expression, use has 
been made of the important fluctuation-dissipation property 

B (  1 )  3 (F"(  t rl)Fs'(rl)) = kBTmly(ltl) (6.5) 
valid only for the RJ spectrum. 

Now, from equations (5.281, (5.38a, 6, c) and (5.44a, b, c) we obtain, for 5 w 0 ~ , < c  
mot<< [ - 1 = 2 / W o T o ,  

E 
AX - sin'(w,ut) 

( l + E ) ( 2 + E )  

1 A V - - (  E 1 --sin*(w,ut) 1 
l + &  2 + &  

( 6 . 6 ~ )  

(6.6 b) 

( 6 . 6 ~ )  
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We immediately see that the two first expressions coincide with those obtained for 
the Yukawa distribution. For the last one, we must estimate y(0). From ( 2 . 4 ~ )  and 
(2.8) we may write 

+ ( O )  = l6 ( l  + E ) T ~ T ~  w2p^'(w) dw. (6.7) loX 
If we admit that 6' is approximately constant until w reaches the cut-off value w ,  - 7,' 
and then vanishes, we may estimate the integral appearing in (6.7) by $*(O)w:  and 
then, as b(0) = ( 2 ~ ) - ~ ' ~ ,  

p(0)- ( 2 / 3 ~ ) ( l  + E ) T ~ / T : .  (6.8) 

Consequently, in ( 6 . 6 ~ )  we may write for the first term on the RHS 

(6.9) 

where (5.4) has been used. 
Obviously, this term predominates in (6.6c), and then 

AU - E / ( w , T , ) ~ .  (6.10) 

This expression also coincides with that obtained for the Yukawa case. 
Therefore, the discussion appearing in Blanco et a1 (1986) on the perturbative effect 

of the radiation field can be extended to the class of charge distributions studied in 
the present paper. 

The theme of the energy interchange will also present the same characteristics as 
the Yukawa case. However, the study is somewhat more involved. We now seek to 
clarify this point with a frequency analysis of the energy interchange. 

The power absorbed by the charge in the frequency range between w and w + dw 
is given by 

P , (w ,w+dw)s I , (o )dw=-  d u ( u ( t ) F " ( t + u ) ) , t ~ ~ s o u  I: (6.11) 

where the average has to be calculated in the stationary state. A derivation of that 
expression can be found in Blanco and Pesquera (1986). 

Now, by using (6.2b) for t + CO, the relations (6.5), (2.4a), (3.5~) and the properties 
of the Laplace transform, we get after some algebra 

I,( w ) = (2/ 77) kB T W ~ [  Im T (  -iw )]'1i2( -iw ) I 2 .  (6.12) 

In order to understand the shape of Z,(w) as a function of w, we may consider two 
in a power series of U T ,  (see regions: w << T;' and w 3 T;'. In the former we expand 

equation (5.20)). The first non-vanishing contribution to I , ( @ )  gives 

which is exactly the expression obtained when the Abraham-Lorentz (AL) model is 
used for the charge. 

In the case w 3 T,, condition (G) lets us write 

/w2(1+ +)I > w2(1 - E )  >> w $ ( l +  E ) ;  
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and we may 

Now, the 

approximate I ,  by its value corresponding to the free particle, wo = 0, 

(6.13 b )  

total contribution of small frequencies ( U  << 7;') is well known from the 
AL model to be of order 

P > ) -  ( k g T ) w i r o g .  (6.14) 

Moreover, the free-particle expression is negligible at small frequencies and 
coincides with the oscillator expression at high frequencies. As we shall see now, the 
total power for the free case is in general much bigger than the contribution of the 
peak around wo in expression (6.12). Consequently, the total absorbed power for the 
oscillator will be given in the first approximation by the free-particle value ( w o = O ) .  
It is given by 

To estimate this quantity, note that, 

11 + 71 < 1 + E 

and then 

- pa > I,' dw[Im +(-io)]' 
(8 )  T ( 2 +  &)(1+ E ) 2  

(6.15) 

(6.16) 

The same arguments leading to (6.8) enable us to estimate this expression as 

4 7; - p a  

(8) 3 ~ ( 2 + s )  72' 

In one period, W O ' ,  the energy interchanged is 

-3 (6.17) 

(6.18) 

Although both the numerator and the denominator are small, only for high enough 
frequencies will expression (6.18) not be large. Then we again obtain, as in the Yukawa 
case, a strong interaction between the radiation field and the charge. 

7. Conclusions 

We have presented a rather exhaustive analysis of the motion of a rigid spherically 
symmetric extended charge in the presence of a linear force field in the non-relativistic 
approximation. A short analysis of its interaction with ru radiation also appears. 
However, not all kinds of charge distributions have been treated. Some restrictions 
have been necessary so as to be able to specify the solutions more or less explicitly. 
For instance, p has a definite sign and q must have a strictly negative abscissa of 
convergence; the radius is too large and the frequency too small so as to have 0 < E < 0.5 
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and w,T,<< 1, respectively, in § 5, etc. The need for these restrictions appears clearly 
in the analysis developed in the various sections. 

We have obtained the general form of solutions including non-radiating oscillations 
but not runaways. For radii not too small (0 < E < 0.5) and frequencies not too large 
( w ~ T ~ < <  1) we obtain that the motion is similar to the one corresponding to the AL 
model, the several parameters coinciding in the first order of a w07, expansion. 

On the other hand, for this kind of charge distribution, the interaction with the IU 
radiation is small as concerns the phase-space trajectory only if the electromagnetic 
mass is negligible compared with the mechanical one. However, this interaction will 
be strong in general if higher derivatives of the electron position are considered, a fact 
that is due to the effect of the high frequencies. 

As a matter of fact we have seen that the behaviour displayed by a Yukawa charge 
distribution (see Blanco er a1 1986) also occurs in the case of the wide class of charge 
distributions considered in this paper. On the other hand, as the analysis prestnted 
shows, it could be said that we have characterised the kind of charge distributions for 
which the motion displays a behaviour similar to the motion ruled by the AL model, 
which then becomes a good approximation to the extended model for such distributions. 
Moreover, the analysis seems to indicate that, most probably, for other charge distribu- 
tions another behaviour is to be expected that is not well represented by the AL model. 
For instance, the possibility of having non-radiating solutions is undoubtedly not 
shared by this point model. However, not all the distributions excluded from this 
paper will necessarily display a ‘new’ type of behaviour (see Blanco et a1 1986) and 
the search of structures having such ‘strange’ solutions has in our opinion great interest. 

Appendix 1 

To obtain (4.28) we first prove the following. 

Lemma. Let f be an absolutely integrable real-valued function with second derivative 
and satisfying 

x>O*-f(-x)=f(x)>O. ( A l . l )  

Let a > 0 be a zero off  of multiplicity 2. Then 

(A1.2) 

Roo$ We first define the function 

x # a  ( A 1 . 3 ~ )  
f(x)-f(a)-f’(a)(x-a) 

( X  - a)’ 

x = a. (A1.3b) 

The limit exists because of the properties of f  and so Q is continuous at x = a too, 
The following transformations are immediate. 

f(x)-f(a)-f’(a)(x--a) 
(X - a)* 

1 lim 
Q(X, a )  = 

X ’ U  
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For any A > O  we may write 

(Al.4) 

Deriving 

K ‘ ( a ) =  K’(a) I ,= ,  

,=4 

A 

+ A [ p ( A + a ,  a)-cp(-A+a, U ) ] -  (A1.5) 

From (A1.3a, b )  we obtain 

= -S”(ff)+2p(t + a ,  a )  
ap(x9 a f f  I x = 1 + 0  

t (A1.6) 

whence (A1.5) yields 

K ’ ( a )  = 
A 5 f’(t+dr+A[p(A+a,a)-p(-A+a,a)]+ 

(A1.7) 
lrl>A 

Since a is a double zero off. we have 

f ( a )  =f’(a) = 0 (Al.8) 

and then 

Ap(*A + U ,  U )  =f(*A + a ) / A .  (A1.9) 

Expression (A1.7) is valid for all A, and  in  particular we may perform the limit 
A-co. The two first terms in  (A1.7) vanish, the second one because of (A1.9) and 
both due  to the integrability o f f :  Consequently 

?L 3c 

K ‘ (  a )  = d t  p( t + a, a )  = I p( t ,  a )  dr. ( A l .  10) I_, - X  

Now, in virtue of ( A l . l )  we obtain from (A1.3a, b )  

p ( t , a ) = f ( t ) / ( t - - a ) * > o  t > O  ( A l . l l )  

(Al.12) 
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and then 

t > 0 3  cp ( - t ,  a ) + cp ( t, a ) > 0 

whence, finally 

( A l .  13)  

5 

[ cp ( t, a )  + cp ( -  t, a ) ]  d t > 0 ( A l .  14) 

which proves the lemma. 

Going back to the point in which we are interested, i.e. the proof of (4.28), in (4.22) 
we see that 

Let us define now, as the f function of the lemma, 

Now, on the one hand 

and, on the 
(see Blanco 

But this 

( A l .  15) 

(Al.16) 

i p * ( iw i ) i  s = 1 ~ 2 ~ ) ~ / ~  (A1.17) 

other hand, the existence of y comes from the existence of the integral 
et a1 1986) 

lox w 2 b 2 ( w )  dw. (Al.18) 

fact demands that p*' converges to zero faster than w - 3  as w + m ,  and 
consequently wb2 goes to zero faster than w - 2  whence we obtain the absolute integrabil- 
ity of f ( x ) .  

As concerns the second derivative of (A1.16), it is easy to see from ( 2 . 4 ~ )  that 

2rf(w) = lox d t  y (  t )  sin wt 

whence it follows that 

d t  y (  t ) t 2 .  

(Al.19) 

(A1.20) 

Now, by virtue of (4.3) the last integral is finite, which proves the existence of the 
second derivative of 1: Relations ( A l . l )  are trivial. Finally, since po must satisfy 
equation (4.23a), it is clear that it is a double zero of j Consequently the lemma 
applies and  it results that (note m ,  > 0) 

(A1.21) 

which proves (4.28). 
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We are going to obtain the bounds for R i ( t )  given by (5.42). 
Let us remember that along C 2 ,  R e p  = - l / 5 re ,  and then 

y(  t )  exp( t / 5 ~ . , )  dt < E l+(z) l  s ? ( - -1 /5~)  = 5: 
whence we may write 

where 

A = I m z  

A. = w i  

A ,  = wi lz i  

A2 = \z12/(  1 + E )  

Making now the change 

AT, = x 

and calling 

6 = wore 

(A2.2) may be written 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4a) 

(A2.46) 

( A 2 . 4 ~ )  

(A2.5) 

(A2.6) 

with 
- 2 2  A.  = wore  

A, = w ; T , /  -++ixl 

- 1  
A2=-l--f+ix12 

l + &  

Let us consider the quantity 

(A2.8a) 

(A2.8b) 

( A 2 . 8 ~ )  

(A2.9) 

which allows us to write 

S2( 1 + E )  + ( - + + i ~ ) ~ (  1 + +) = [a2+ ( - + + i ~ ) ~ ] ( l +  &)(I  + 0). (A2.10) 

A bound can be found for Q. Firstly we may put 

(A2.11) 
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with 

(A2.12) 

where use has been made of (A2.1). Now, the maximum of y ( x )  is easily found to 
be at  

X i =  S2+& (A2.13) 

and to have the value 

y(xo)=ymax= l+$SZ.  (A2.14) 

Consequently we may write 

whence we obtain 

11 + 91 > 1 - 77 > 0.1. 

From (A2.10) and (A2.16), (A2.7) becomes 

(A2.16) 

A procedure similar to the one used above will allow us to simplify this expression. 
Let us introduce 

Q = ~ ~ / ( - ; + i x ) ~ .  (A2.18) 

Now 

S2+( - i+ ix ) ’=  ( - ;+ix)2(1+Q).  (A2.19) 

For Q, it is easy to find 

Q / = S 2 / ( h + x 2 ) < 2 5 s 2 = q ’ < <  1 (A2.20) 

by which 

and then 

l + Q l >  1 -77’=0(1) (A2.21) 

and replacing 77 and 77’ by their values we obtain expressions (5.44a, b, c).  



Dynamics of a classical extended charge 5921 

References 

Blanco R 1987 1. Phys. A :  Math. Gen. 20 5885 
Blanco R and Pesquera L 1986 Phys. Reu. D 34 1114 
Blanco R, Pesquera L and Jimtnez J L 1986 Phys. Reu. D 34 452 
Bohm D and Weinstein W 1948 Phys. Rev. 74 1789 
Coleman S 1982 Elecrromagnefism. Paths fo Research ed D Teplitz (New York: Plenum) p 183 
Daboul J and Jensen J H D 1973a 2. Phys. 265 455 
- 1973b 2. Phys. 265 479 
de la Peha L, Jimenez J L and Montemayor R 1982 Nuooo Cimenro B 69 71 
Devaney A J and Wolf E 1973 Phys. Reo. D 8 1044 
Erber T 1961 Forrschr. Phys. 9 343 
Fargue D 1981 C.R.  Acad. Sci., Paris 293 337 
FranGa H M, Marques G C and da Silva A J 1978 Nuouo Cimento A 48 65 
Grandy W T Jr and Aghazadeh A 1982 Ann. Phys., N Y  142 284 
Kaup D J 1966 Phys. Rev. 152 1130 
Levine H, Moniz E J and Sharp D H 1977 Am. J.  Phys. 45 75  
Markov M 1946 J. Phys. (USSR)  10 159 
Moniz E J and Sharp D H 1977 Phys. Reu. D 15 2850 
Nodvik J S 1964 Ann. Phys., N Y  28 225 
Pearle Ph 1982 Electromagnetism. Paths to Research ed D Teplitz (New York: Plenum) p 211 


